1. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

Измерение	Температура, К	Давление, кПа	Объем, л	
1	290	161	15	
2	310	172	15	
3	330	183	15	
4	350	194	15	
5	370	205	15	

Такая закономерность характерна для процесса:

- 1) адиабатного
- 2) изобарного
- 3) изотермического 5) циклического
- 4) изохорного
- 2. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

Измерение	Температура, К	Давление, кПа	Объем, л	
1	280	93	25	
2	320	106	25	
3	360	120	25	
4	400	133	25	
5	440	146	25	

Такая закономерность характерна для процесса:

- 1) адиабатного
- 2) изобарного 5) циклического
- 3) изохорного
- 4) изотермического
- 3. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

Измерение	Температура, К	Давление, кПа	Объем, л
1	330	300	9,1
2	340	300	9,4
3	350	300	9,7
4	360	300	10,0
5	370	300	10,2

Такая закономерность характерна для процесса:

1) адиабатного

1 / 15

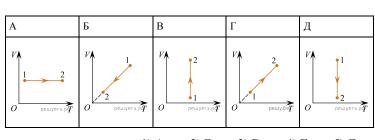
- 2) изобарного
- 3) изотермического 5) циклического
- 4) изохорного

4. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

Измерение	Температура, К	Давление, кПа	Объем, л	
1	280	233	10	
2	320	266	10	
3	340	283	10	
4	360	299	10	
5	380	316	10	

Такая закономерность характерна для процесса:

- 1) циклического
- 2) изохорного
 - 3) адиабатного 5) изотермического
- 4) изобарного
- 5. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:


Измерение	Измерение Температура, К		Объем, л	
1	280	150	15,5	
2	310	150	17,2	
3	340	150	18,8	
4	370	150	20,5	
5	400	150	22,2	

Такая закономерность характерна для процесса:

- 1) изохорного
- 2) адиабатного
- 3) изотермического 5) циклического
- 4) изобарного

0

6. На графике в координатах (p, V) представлен процесс $1\rightarrow 2$ в идеальном газе, количество вещества которого постоянно. В координатах (V, p) Т) этому процессу соответствует график, обозначенный буквой:

- 3) B
- 4) Γ
 - 5) Д

7. 1	В Междуна	родной систем	е единиц (СИ) удельная т	еплота сгора	іния топлива	а измеряется в:	
		1) $\frac{\mathcal{L}_{K\Gamma}}{K\Gamma \cdot K}$	$2) \frac{\cancel{\bot}_{K\Gamma}}{}$	3) Дж К	4) Дж	5) K		
8. 1 работу:	Выберите г	процессы, в кот	орых сила да	вления идеа	льного газа	совершает п	положительную	
	1)	изобарное сж	атие газа;	2) изобар	ное нагрев	ание газа;		

- 3) изохорное нагревание газа; 4) изохорное охлаждение газа; 5) изотермическое расширение газа.
- **9.** В некотором процессе зависимость давления p идеального газа от его объема V имеет вид $p=\frac{A}{V},$ где A коэффициент пропорциональности. Если количество вещества постоянно, то процесс является:
 - 1) адиабатным 2) изотермическим 3) изохорным 4) изобарным 5) произвольным
- **10.** При изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа изменилось от $p_1=130~\mathrm{k\Pi a}$ до $p_2=140~\mathrm{k\Pi a}$. Если начальная температура газа $T_1=325~\mathrm{K}$, то конечная температура T_2 газа равна:
 - 1) 330 K 2) 350 K 3) 390 K 4) 400 K 5) 420 K
- **11.** Если при изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа увеличилось на $\Delta p=120$ кПа, а абсолютная температура возросла в k=2,00 раза, то давление p_2 газа в конечном состоянии равно:
- **12.** Если при изотермическом расширении идеального газа, количество вещества которого постоянно, давление газа уменьшилось на $\Delta p = 80$ кПа, а объем газа увеличился в k = 5,00 раз, то давление p_2 газа в конечном состоянии равно:
 - 1) 20 кПа 2) 30 кПа 3) 40 кПа 4) 50 кПа 5) 60 кПа
- **13.** При изохорном нагревании идеального газа, количество вещества которого постоянно, температура газа изменилась от T_1 = 300 K до T_2 = 420 K. Если начальное давление газа p_1 = 150 кПа, то конечное давление p_2 газа равно:
 - 1) 180 кПа 2) 190 кПа 3) 200 кПа 4) 210 кПа 5) 220 кПа
- **14.** Если при изотермическом расширении идеального газа, количество вещества которого постоянно, давление газа уменьшилось на $|\mathcal{D}p|=240$ кПа, а объем газа увеличился в k=3,00 раз, то начальное давление p_1 газа было равно:
 - 1) 300 кПа 2) 320 кПа 3) 360 кПа 4) 380 кПа 5) 400 кПа РЕШУ ЦТ и ЦЭ — физика

- **15.** При изохорном нагревании идеального газа, количество вещества которого постоянно, температура газа изменилась от $T_1 = 300~{\rm K}$ до $T_2 = 440~{\rm K}$. Если начальное давление газа $p_1 = 150~{\rm k}\Pi{\rm a}$, то конечное давление p_2 газа равно:
 - 1) 180 кПа 2) 190 кПа 3) 200 кПа 4) 210 кПа 5) 220 кПа
- **16.** Если при изотермическом расширении идеального газа, количество вещества которого постоянно, объем газа увеличился на $|\varDelta V|=8$ л, а его давление уменьшилось в k=3,00 раз, то начальный объем V_1 газа был равен:
 - 1) 2,0 л 2) 3,0 л 3) 4,0 л 4) 5,0 л 5) 6,0 л
- **17.** При изобарном нагревании идеального газа, количество вещества которого постоянно, объем газа увеличился в k=1,50 раза. Если начальная температура газа была $T_1=300~{\rm K}$, то изменение температуры Δt в этом процессе составило:
 - 1) 27,0 K 2) 150 K 3) 300 K 4) 360 K 5) 450 K
- **18.** При изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа изменилось от $p_1 = 150 \text{ к}\Pi \text{а}$ до $p_2 = 165 \text{ к}\Pi \text{а}$. Если начальная температура газа $T_1 = 300 \text{ K}$, то конечная температура T_2 газа равна:
 - 1) 330 K 2) 350 K 3) 390 K 4) 400 K 5) 420 K
- **19.** При изобарном нагревании идеального газа, количество вещества которого постоянно, объем газа увеличился в k=1,40 раза. Если температура газа возросла на $\Delta t=120$ К,то начальная температура T_1 газа была равна:
 - 1) 27.0 K 2) 150 K 3) 300 K 4) 360 K 5) 450 K
- **20.** При изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа изменилось от $p_1 = 120 \text{ к}\Pi \text{а}$ до $p_2 = 160 \text{ к}\Pi \text{a}$. Если начальная температура газа $T_1 = 300 \text{ K}$, то конечная температура T_2 газа равна:
 - 1) 330 K 2) 350 K 3) 390 K 4) 400 K 5) 420 K
- **21.** При изобарном охлаждении идеального газа, количество вещества которого постоянно, его объем уменьшился от V_1 = 70 л до V_2 = 60 л. Если начальная температура газа t_1 = 77 °C, то конечная температура t_2 газа равна:
 - 1) 17°C 2) 27°C 3) 37°C 4) 47°C 5) 57°C
- **22.** При изобарном охлаждении идеального газа, количество вещества которого постоянно, его объем уменьшился от V_1 = 66 л до V_1 = 57 л. Если начальная температура газа t_1 = 57 °C, то конечная температура t_2 газа равна:
 - 1) 12°C 2) 22°C 3) 32°C 4) 42°C 5) 52°C

23. Если при изобарном нагревании идеального газа, начальная температура которого t_1 = 7.0° C, его объём увеличился в k = 1.2 раза, то конечная температура t_2 газа равна:

1) 8.4°C

2) 14°C

3) 24°C

5) 63°C

5) 74 л

24. Идеальный газ находился при температуре $t_1 = 27^{\circ}$ С. Если газ изохорно нагрели до температуры $t_2 = 57^{\circ}$ C, то его давление увеличилось в:

1) 2,1 pasa 2) 1,9 pasa

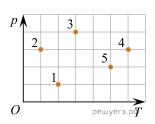
3) 1,6 pasa

4) 1,4 pasa

4) 40° C

5) 1,1 pasa

25. При изобарном нагревании идеального газа, количество вещества которого постоянно, его температура увеличилась от $t_1 = 27$ °C до $t_2 = 67$ °C. Если начальный объем газа $V_1 = 60$ л, то конечный объем V_2 газа равен:


1) 66 л

2) 68 л

3) 70 л

4) 72 л

26. На *p*–*T* -диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наименьшему давлению р газа, обозначено цифрой:

1) 1

2) 2

3)3

5) 5

27. При изобарном охлаждении идеального газа, количество вещества которого постоянно, его объём уменьшился от $V_1 = 80$ л до $V_2 = 64$ л. Если начальная температура газа $t_1 = 97$ °C, то конечная температура t_2 газа равна:

1) 13 °C

2) 23 °C

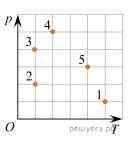
3) 33 °C

4) 43 °C

5) 53 °C

28. При изобарном охлаждении идеального газа, количество вещества которого постоянно, его объём уменьшился от $V_1 = 68$ л до $V_2 = 56$ л. Если начальная температура газа $t_1 = 67$ °C, то конечная температура t_2 газа равна:

1) 7 °C


2) 9 °C

3) 17 °C

4) 23 °C

5) 37 °C

29. На p-T -диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наибольшему давлению р газа, обозначено цифрой:

1) 1

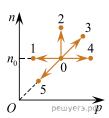
3) 3

5) 5

30. В результате изотермического процесса объем идеального газа увеличился от $V_1 = 5.0 \text{ л}$ до $V_2 = 6,0$ л. Если начальное давление газа $p_1 = 0,18$ МПа, то конечное давление p_2 газа равно:

1) 0.11 MΠa

6/15


2) 0,13 MΠa

3) 0,15 MΠa

4) 0.16 MΠa

5) 0,22 MΠa

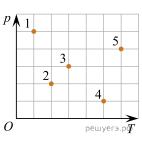
31. На рисунке изображена зависимость концентрации n молекул от давления р для пяти процессов с идеальным газом, количество вещества которого постоянно. Изохорное нагревание газа происходит в процессе:

1)0-12)0-2

3)0-3

5)0-5

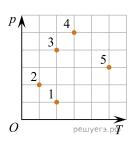
32. При изотермическом сжатии давление идеального газа изменилось от $p_1 = 0.15 \text{ M}$ Па до $p_2 = 0,18$ МПа. Если конечный объем газа $V_2 = 5,0$ л, то начальный объем V_1 газа равен:

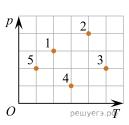

1) 6.0 л

2) 6.2 л 3) 7.0 л

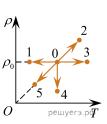
4) 7.5 л

5) 8.2 л

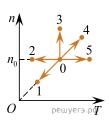

33. На *p-T* - диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наименьшему давлению р газа, обозначено цифрой:


1) 1

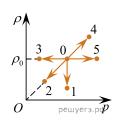
5) 5


- **34.** Идеальный газ объемом $V_1 = 5.0$ л находился при температуре $t_1 = 27$ °C. Если при изобарном нагревании температура газа увеличилась до $t_2 = 87$ °C, то объем V_2 газа в конечном состоянии равен:
 - 1) 4,2 л
- 2) 6,0 л
- 3) 6,5 л
- 4) 7,0 л 5) 7,6 л
- **35.** На *p-T* диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наименьшей температуре *T* газа, обозначено цифрой:

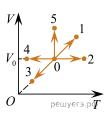
- 1) 1 2) 2
- 3)3
- 4) 4
- 5) 5
- **36.** На p T -диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наименьшей температуре T газа, обозначено цифрой:



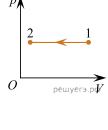
- 1) 1 2) 2
- 3)3
- 4) 4
 - 4 5) 5
- **37.** На рисунке изображена зависимость плотности ρ молекул от температуры T для пяти процессов с идеальным газом, масса которого постоянна. Давление газа ρ изохорно уменьшалось в процессе:

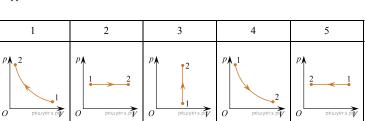


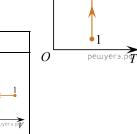
- 1) 0 1 2) 0
- 3) 0 -
- 4)0-4
- 5) 0 5


38. На рисунке изображена зависимость концентрации n молекул от температуры T для пяти процессов с идеальным газом, количество вещества которого постоянно. Давление газа p изохорно увеличивалось в процессе:

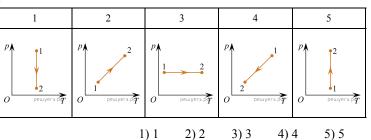
- 1) 0-1 2) 0-2
- 3)0-3
 - 3
- 5)0-5
- **39.** На рисунке изображена зависимость плотности ρ от давления p для пяти процессов с идеальным газом, масса которого постоянна. Изохорное охлаждение газа происходит в процессе:

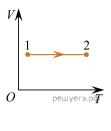

- 1) 0-1 2) 0-2
- 3)0-3
- 4) 0 4
- 5)0-5
- **40.** На V—Т диаграмме изображены пять процессов с идеальным газом, масса которого постоянна. При постоянной плотности ρ давление газа p увеличивалось в процессе:


- 1) 0-1 2) 0-2
- 3)0-3
- 4)
- 5)0-5
- **41.** С идеальным газом, количество вещества которого постоянно, проводят изобарный процесс. Если объём газа увеличивается, то:
 - 1) к газу подводят теплоту, температура газа увеличивается
 - 2) теплота не подводится к газу и не отводится от него, температура газа уменьшается
 - 3) теплота не подводится к газу и не отводится от него, температура газа постоянна
 - 4) теплота не подводится к газу и не отводится от него, температура газа увеличивается
 - 5) от газа отводят теплоту, температура газа уменьшается


- **42.** С идеальным газом, количество вещества которого постоянно, проводят изохорный процесс. Если давление газа увеличивается, то:
 - 1) к газу подводят теплоту, температура газа увеличивается
 - 2) теплота не подводится κ газу и не отводится от него, температура газа уменьшается
 - 3) теплота не подводится к газу и не отводится от него, температура газа постоянна
- 4) теплота не подводится к газу и не отводится от него, температура газа увеличивается
 - 5) от газа отводят теплоту, температура газа уменьшается
- **43.** С идеальным газом, количество вещества которого постоянно, проводят изотермический процесс. Если объём газа увеличивается, то:
 - 1) к газу подводят теплоту, давление газа увеличивается
 - 2) к газу подводят теплоту, давление газа уменьшается
 - 3) теплота не подводится к газу и не отводится от него, давление газа увеличивается
 - 4) теплота не подводится к газу и не отводится от него, давление газа уменьшается
 - 5) теплота отводится от газа, давление газа уменьшается
- **44.** На рисунке представлен график зависимости давления идеального газа определенной массы от объема. График этого процесса в координатах (V, T) представлен на рисунке, обозначенном цифрой:

45. На рисунке представлен график зависимости давления идеального газа определенной массы от абсолютной температуры. График этого процесса в координатах $(p,\ V)$ представлен на рисунке, обозначенном цифрой:




46. На рисунке представлен график зависимости объема идеального газа определенной массы от абсолютной температуры. График этого процесса в координатах $(p,\ T)$ представлен на рисунке, обозначенном цифрой:

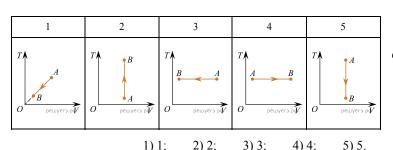
2)2

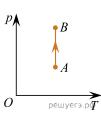
3)3

1) 1

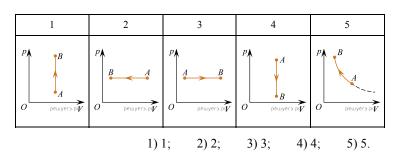
47. Если давление p_0 насыщенного водяного пара при некоторой температуре больше парциального давления p водяного пара в воздухе при этой же температуре в n=1,2 раза, то относительная влажность ϕ воздуха равна:

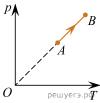
- 1) 35 %
- 2) 46 %
- 3) 59 %
- 4) 66 %
- 5) 83 %

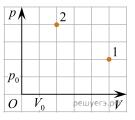

48. Сосуд, плотно закрытый подвижным поршнем, заполнен воздухом с относительной влажностью $\phi_1=30\%$. Если при изотермическом сжатии объём воздуха в сосуде уменьшится в три раза, то относительная влажность ϕ_2 воздуха будет равна:


- 1) 100%
- 2) 90%
- 3) 30%
- 4) 15%

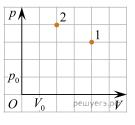
5)5


5) 10%


49. С идеальным газом, количество вещества которого постоянно, провели процесс AB, показанный в координатах (p, T). Этот же процесс в координатах (T, V) изображён на графике, обозначенном цифрой:



50. С идеальным газом, количество вещества которого постоянно, провели процесс AB, показанный в координатах (p, T). Этот же процесс в координатах (p, V) изображён на графике, обозначенном цифрой:



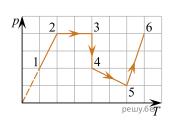
51. Идеальный газ, количество вещества которого постоянно, перевели из состояния 1 в состояние 2 (см. рис.). Если в состоянии 1 температура газа $T_1 = 400~\mathrm{K}$, то в состоянии 2 температура газа T_2 равна:

- 1) 1000 K
- 2) 800 K
- 3) 500 K
- 4) 320 K
- 5) 200 K

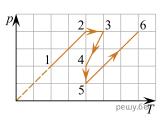
52. Идеальный газ, количество вещества которого постоянно, перевели из состояния 1 в состояние 2 (см. рис.). Если в состоянии 1 температура газа $T_1=480~{\rm K}$, то в состоянии 2 температура газа T_2 равна:

- 1) 320 K
- 2) 360 K
- 3) 640 K
- 4) 720 K
- 5) 960 K
- **53.** По трубе, площадь поперечного сечения которой $S=5,0\,\,\mathrm{cm}^2$, со средней скоростью $\langle\upsilon\rangle=8,0\,\,\mathrm{m/c}$ перекачивают идеальный газ ($M=58\cdot10^{-3}\,\,\mathrm{кг/моль}$), находящийся под давлением $p=390\,\,\mathrm{кПa}$ при температуре $T=284\,\,\mathrm{K}$. За промежуток времени $\Delta t=10\,\,\mathrm{muh}$ через поперечное сечение трубы проходит масса газа, равная ... кг.
- **54.** Если идеальный газ, количество вещества которого постоянно, изохорно охладили от температуры $t_1 = 117$ °C до температуры $t_2 = 39$ °C, то модуль относительного изменения давления газа $\left| \frac{\Delta p}{p_1} \right|$ равен... %.
- **55.** Велосипедную камеру, из которой был удалён весь воздух, накачивают с помощью насоса. При каждом ходе поршня насос захватывает из атмосферы воздух объёмом $V_0 = 4,8\cdot 10^{-5}~{\rm M}^3$. Чтобы объём воздуха в камере стал равным $V_1 = 2,4\cdot 10^{-3}~{\rm M}^3$, его давление достигло значения $p_1 = 1,6\cdot 10^5~{\rm Ha}$, поршень должен сделать число N ходов, равное

Примечание. Атмосферное давление $p_0=1,0\cdot 10^5~{\rm Ha},$ изменением температуры воздуха при накачивании камеры пренебречь.

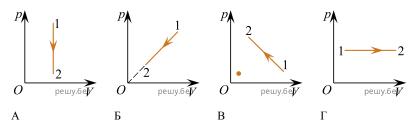

56. Велосипедную камеру, из которой был удалён весь воздух, накачивают с помощью насоса. При каждом ходе поршня насос захватывает из атмосферы воздух объёмом $V_0 = 4,7 \cdot 10^{-5} \text{ м}^3$. Чтобы объём воздуха в камере стал равным $V_1 = 2,2 \cdot 10^{-3} \text{ м}^3$, его давление достигло значения $p_1 = 1,54 \cdot 10^5$ Па, поршень должен сделать число N ходов, равное

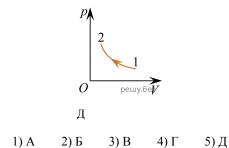
Примечание. Атмосферное давление $p_0=1,0\cdot 10^5~\Pi a,$ изменением температуры воздуха при накачивании камеры пренебречь.


57. Значения плотности $\rho_{\rm H}$ насыщенного водяного пара при различных температурах t представлены в таблице. Если в одном кубическом метре комнатного воздуха при температуре $t_0 = 24$ °C содержится m = 12 г водяного пара, то чему равна относительная влажность ϕ воздуха в комнате? Ответ приведите в процентах.

t, °C	21	22	23	24	25
$\rho_{_{H}}, {_{\Gamma}/_{M}}^{3}$	18,3	19,4	20,6	21,8	23,0

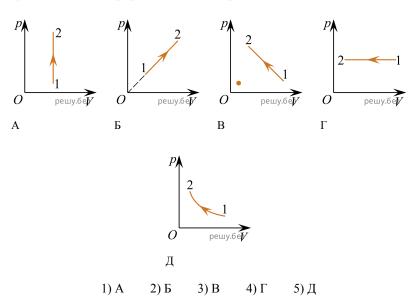
- **58.** При изохорном нагревании идеального газа, количество вещества которого постоянно, температура газа увеличилась на $\Delta T = 160$ K, а давление газа увеличилось в k = 1,50 раза. Начальная температура T_1 газа была равна ... K.
- **59.** При изотермическом расширении одного моля идеального одноатомного газа, сила давления газа совершила работу $A_1 = 1,60$ кДж. При последующем изобарном нагревании газу сообщили в два раза большее количество теплоты, чем при изотермическом расширении. Если начальная температура газа $T_1 = 326$ K, то его конечная температура T_2 равна ... **К**.
- **60.** На рисунке представлен график перехода идеального газа, количество вещества которого постоянно, из состояния 1 в состояние 6 в координатах (p, T). К изопроцессам можно отнести следующие переходы:




- 1) $1 \to 2$ 2) $2 \to 3$ 3) $3 \to 4$ 4) $4 \to 5$
- **61.** При изобарном расширении идеального газа, количество вещества которого постоянно, его объём увеличился от $V_1=100$ л до $V_2=120$ л. Если начальная абсолютная температура за $T_1=300$ K, то его конечная температура T_2 равна ... K.
- **62.** На рисунке представлен график перехода идеального газа, количество вещества которого постоянно, из состояния 1 в состояние 6 в координатах (p, T). К изопроцессам можно отнести следующие переходы:

1) $1 \rightarrow 2$ 2) $2 \rightarrow 3$ 3) $3 \rightarrow 4$ 4) $4 \rightarrow 5$ 5) $5 \rightarrow$

- **63.** При изобарном расширении идеального газа, количество вещества которого постоянно, его объём увеличился от $V_1=100~{\rm gm}^3$ до $V_2=150~{\rm gm}^3$. Если начальная абсолютная температура газа $T_1=300~{\rm K}$, то его конечная температура T_2 равна ... К.
- **64.** Изотермическому сжатию идеального газа, количество вещества которого постоянно, в координатах (p, V) соответствует график, показанный на рисунке, обозначенном буквой:



- **65.** При изотермическом сжатии идеального газа, количество вещества которого постоянно, его давление изменилось от $p_1=150~\mathrm{k\Pi a}$ до $p_2=180~\mathrm{k\Pi a}$. Если конечный объём газа $V_2=50~\mathrm{n}$, в его начальный объём V_1 был равен ... л
- **66.** В баллон вместимостью $V=400~{\rm cm}^3$ при постоянной температуре закачивают воздух насосом, вместимость камеры которого $V_0=35,0~{\rm cm}^3$. Начальное давление в баллоне было равно атмосферному давлению $p_0=100~{\rm k\Pi a}$. Когда совершили $n=32~{\rm kayahus}$, давление p в баллоне стала. равным ... ${\rm k\Pi a}$.
- **67.** В некотором процессе идеальному газу, количество вещества которого постоянно, сообщили количество теплоты Q > 0. Если при этом изменение внутренней энергий газа $\Delta U = Q$, то данный процесс является:
 - 1) изотермическим сжатием;

14 / 15

- 2) изобарным расширением;
- 3) изохорным нагреванием;
- и; 4) изобарным сжатием;
 - 5) изохорным охлаждением.

68. Изохорному нагреванию идеального газа, количество вещества которого постоянно, в координатах p, V соответствует график, показанный на рисунке, обозначенном буквой:

- **69.** Идеальный газ, количество вещества которого постоянно, находился в сосуде при абсолютной температуре T_1 =300 К. Если при изохорном нагревании давление газа увеличилось в k=1,20 раза то конечная температура T_2 газа стала равной ... К.
- **70.** В баллон при постоянной температуре закачивают воздух насосом, вместимость камеры которого $V_0=28,0\,\,\mathrm{cm}^3$. Начальное давление в баллоне было равно атмосферному давлению $p_0=100\,\,\mathrm{к}\Pi \mathrm{a}$. Если после совершения $n=30\,\,\mathrm{k}\Pi \mathrm{a}$ качаний давление в баллоне стало $p=300\,\,\mathrm{k}\Pi \mathrm{a}$, то вместимость V баллона равна ... cm^3 .